skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gültekin, Kayhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract While supermassive black hole (SMBH) binaries are not the only viable source for the low-frequency gravitational wave background (GWB) signal evidenced by the most recent pulsar timing array (PTA) data sets, they are expected to be the most likely. Thus, connecting the measured PTA GWB spectrum and the underlying physics governing the demographics and dynamics of SMBH binaries is extremely important. Previously, Gaussian processes (GPs) and dense neural networks have been used to make such a connection by being built as conditional emulators; their input is some selected evolution or environmental SMBH binary parameters and their output is the emulated mean and standard deviation of the GWB strain ensemble distribution over many Universes. In this paper, we use a normalizing flow (NF) emulator that is trained on the entirety of the GWB strain ensemble distribution, rather than only mean and standard deviation. As a result, we can predict strain distributions that mirror underlying simulations very closely while also capturing frequency covariances in the strain distributions as well as statistical complexities such as tails, non-Gaussianities, and multimodalities that are otherwise not learnable by existing techniques. In particular, we feature various comparisons between the NF-based emulator and the GP approach used extensively in past efforts. Our analyses conclude that the NF-based emulator not only outperforms GPs in the ease and computational cost of training but also outperforms in the fidelity of the emulated GWB strain ensemble distributions. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  2. Abstract We present an analysis searching for dual active galactic nuclei (AGN) among 62 high-redshift (2.5 <z< 3.5) X-ray sources selected from the X-UDS, AEGIS-XD, CDF-S, and COSMOS-Legacy Chandra surveys. We aim to quantify the frequency of dual AGN in the high-redshift Universe, which holds implications for black hole merger timescales and low-frequency gravitational wave detection rates. We analyze each X-ray source using BAYMAX, an analysis tool that calculates the Bayes factor for whether a given archival Chandra AGN is more likely a single or dual point source. We find no strong evidence for dual AGN in any individual source in our sample. We increase our sensitivity to search for dual AGN across the sample by comparing our measured distribution of Bayes factors to that expected from a sample composed entirely of single point sources and find no evidence for dual AGN in the sample distribution. Although our analysis utilizes one of the largest Chandra catalogs of high-zX-ray point sources available to study, the findings remain limited by the modest number of sources observed at the highest spatial resolution with Chandra and the typical count rates of the detected sources. Our nondetection allows us to place an upper limit on the X-ray dual AGN fraction at 2.5 <z< 3.5 of 4.8% at the 95% confidence level. Expanding substantially on these results at X-ray wavelengths will require future surveys spanning larger sky areas and extending to fainter fluxes than has been possible with Chandra. We illustrate the potential of the AXIS mission concept in this regard. 
    more » « less
  3. Abstract We present 0.″22 resolution CO(2–1) observations of the circumnuclear gas disk in the local compact galaxy NGC 384 with the Atacama Large Millimeter/submillimeter Array (ALMA). While the majority of the disk displays regular rotation with projected velocities rising to 370 km s−1, the inner ∼0.″5 exhibits a kinematic twist. We develop warped disk gas-dynamical models to account for this twist, fit those models to the ALMA data cube, and find a stellar mass-to-light ratio in theHband ofM/LH= 1.34 ± 0.01 [1σstatistical] ±0.02 [systematic]M/Land a supermassive black hole (BH) mass (MBH) ofMBH = ( 7.26 0.48 + 0.43 [ 1 σ statistical ] 1.00 + 0.55 [ systematic ] ) × 10 8 M . In contrast to most previous dynamicalMBHmeasurements in local compact galaxies, which typically found over-massive BHs compared to the local BH mass−bulge luminosity and BH mass−bulge mass relations, NGC 384 lies within the scatter of those scaling relations. NGC 384 and other local compact galaxies are likely relics ofz∼ 2 red nuggets, and over-massive BHs in these relics indicate BH growth may conclude before the host galaxy stars have finished assembly. Our NGC 384 results may challenge this evolutionary picture, suggesting there may be increased scatter in the scaling relations than previously thought. However, this scatter could be inflated by systematic differences between stellar- and gas-dynamical measurement methods, motivating direct comparisons between the methods for NGC 384 and the other compact galaxies in the sample. 
    more » « less
  4. ABSTRACT We examine the effect of supermassive black hole (SMBH) mass scaling relation choice on the inferred SMBH mass population since redshift z ∼ 3. To make robust predictions for the gravitational wave background (GWB), we must have a solid understanding of the underlying SMBH demographics. Using the SDSS and 3D-HST + CANDELS surveys for 0 < z < 3, we evaluate the inferred SMBH masses from two SMBH–galaxy scaling relations: MBH–Mbulge and MBH–σ. Our SMBH mass functions come directly from stellar mass measurements for MBH–Mbulge, and indirectly from stellar mass and galaxy radius measurements along with the galaxy mass fundamental plane for MBH–σ. We find that there is a substantial difference in predictions especially for z > 1, and this difference increases out to z = 3. In particular, we find that using velocity dispersion predicts a greater number of SMBHs with masses greater than 109 M⊙. The GWB that pulsar timing arrays find evidence for is higher in amplitude than expected from GWB predictions which rely on high-redshift extrapolations of local SMBH mass–galaxy scaling relations. The difference in SMBH demographics resulting from different scaling relations may be the origin for the mismatch between the signal amplitude and predictions. Generally, our results suggest that a deeper understanding of the potential redshift evolution of these relations is needed if we are to draw significant insight from their predictions at z > 1. 
    more » « less
  5. Abstract We present 0.″22-resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO(2−1) emission from the circumnuclear gas disk in the red nugget relic galaxy PGC 11179. The disk shows regular rotation, with projected velocities near the center of 400 km s−1. We assume the CO emission originates from a dynamically cold, thin disk and fit gas-dynamical models directly to the ALMA data. In addition, we explore systematic uncertainties by testing the impacts of various model assumptions on our results. The supermassive black hole (BH) mass (MBH) is measured to beMBH= (1.91 ± 0.04 [1σstatistical] 0.51 + 0.11 [systematic]) × 109M, and theH-band stellar mass-to-light ratioM/LH= 1.620 ± 0.004 [1σstatistical] 0.107 + 0.211 [systematic]M/L. ThisMBHis consistent with the BH mass−stellar velocity dispersion relation but over-massive compared to the BH mass−bulge luminosity relation by a factor of 3.7. PGC 11179 is part of a sample of local compact early-type galaxies that are plausible relics ofz∼ 2 red nuggets, and its behavior relative to the scaling relations echoes that of three relic galaxy BHs previously measured with stellar dynamics. These over-massive BHs could suggest that BHs gain most of their mass before their host galaxies do. However, our results could also be explained by greater intrinsic scatter at the high-mass end of the scaling relations, or by systematic differences in gas- and stellar-dynamical methods. AdditionalMBHmeasurements in the sample, including independent cross-checks between molecular gas- and stellar-dynamical methods, will advance our understanding of the co-evolution of BHs and their host galaxies. 
    more » « less
  6. Abstract We present results of a multiwavelength analysis of SDSS J025214.67−002813.7, a system that has been previously classified as a binary active galactic nucleus (AGN) candidate based on periodic signals detected in the optical light curves. We use available radio−X-ray observations of the system to investigate the true accretion nature. Analyzing new observations from XMM-Newton and NuSTAR, we characterize the X-ray emission and search for evidence of circumbinary accretion. Although the 0.5–10 keV spectrum shows evidence of an additional soft emission component, possibly due to extended emission from hot nuclear gas, we find the spectral shape is consistent with that of a single AGN. Compiling a full multiwavelength spectral energy distribution (SED), we also search for signs of circumbinary accretion, such as a “notch” in the continuum due to the presence of minidisks. We find that the radio–optical emission agrees with the SED of a standard, radio-quiet, AGN; however, there is a large deficit in emission blueward of ∼1400 Å. Although this deficit in emission can plausibly be attributed to a binary AGN system, we find that the SED of SDSS J0252−0028 is better explained by emission from a reddened, single AGN. However, future studies of the expected hard X-ray emission associated with binary AGNs (especially in the unequal-mass regime) will allow for more rigorous analyses of the binary AGN hypothesis. 
    more » « less
  7. Abstract Pulsar timing array observations have found evidence for an isotropic gravitational-wave background with the Hellings–Downs angular correlations between pulsar pairs. This interpretation hinges on the measured shape of the angular correlations, which is predominantly quadrupolar under general relativity. Here we explore a more flexible parameterization: we expand the angular correlations into a sum of Legendre polynomials and use a Bayesian analysis to constrain their coefficients with the 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). When including Legendre polynomials with multipolesℓ≥ 2, we only find a significant signal in the quadrupole with an amplitude consistent with general relativity and nonzero at the ∼95% confidence level and a Bayes factor of 200. When we include multipolesℓ≤ 1, the Bayes factor evidence for quadrupole correlations decreases by more than an order of magnitude due to evidence for a monopolar signal at approximately 4 nHz, which has also been noted in previous analyses of the NANOGrav 15 yr data. Further work needs to be done in order to better characterize the properties of this monopolar signal and its effect on the evidence for quadrupolar angular correlations. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  8. null (Ed.)
  9. null (Ed.)
  10. ABSTRACT We have used Hubble Space Telescope (HST) images, SAURON Integral Field Spectroscopy (IFS), and adaptative optics assisted Gemini NIFS near-infrared K-band IFS to map the stellar and gas distribution, excitation and kinematics of the inner few kpc of the nearby edge-on S0 galaxy NGC 4111. The HST images map its ≈450 pc diameter dusty polar ring, with an estimated gas mass ≥107 M⊙. The NIFS data cube maps the inner 110 pc radius at ≈7 pc spatial resolution, revealing a ≈220 pc diameter polar ring in hot (2267 ± 166 K) molecular H2 1–0 S(1) gas embedded in the polar ring. The stellar velocity field shows disc-dominated kinematics along the galaxy plane both in the SAURON large scale and in the NIFS nuclear-scale data. The large-scale [O iii] λ5007 Å velocity field shows a superposition of two disc kinematics: one similar to that of the stars and another along the polar ring, showing non-circular motions that seem to connect with the velocity field of the nuclear H2 ring, whose kinematics indicate accelerated inflow to the nucleus. The estimated mass inflow rate is enough not only to feed an active galactic nucleus (AGN) but also to trigger circumnuclear star formation in the near future. We propose a scenario in which gas from the polar ring, which probably originated from the capture of a dwarf galaxy, is moving inwards and triggering an AGN, as supported by the local X-ray emission, which seems to be the source of the H2 1–0 S(1) excitation. The fact that we see neither near-UV nor Br γ emission suggests that the nascent AGN is still deeply buried under the optically thick dust of the polar ring. 
    more » « less